
This addendum updates the Technical Report (Version: 2012, Update 2) for the extension of forecast

horizon that has been implemented as of the probabilities of default (PD) released on 1 April 2013.

Previously, the Credit Research Initiative (CRI) system produced default predictions to a horizon of two

years. With this update, horizons of up to five years can now be computed.

This extension to a five year horizon is done by constraining the term-structure of the parameter

estimates to be Nelson-Siegel (1987; hereafter NS) functions of the forward-starting time. The

term-structures are further constrained so that the effect of risk factors on the forward intensity goes

to zero as the horizon increases. This allows tractable and parsimonious extrapolations for horizons

beyond five years.

The parameter estimation for the NS functions is based on a new numerical method (a pseudo-Bayesian

sequential Monte Carlo technique) developed in a working paper by Duan and Fulop (2013). The

remainder of this addendum details the new parameter estimation. Section 1 describes the

parameterization of the parameters by NS functions, Section 2 gives an overview of the sequential

Monte Carlo method that is used to estimate the NS functions, Section 3 describes how the parameters

can be re-estimated given new data or updates of old data, and Section 4 details the calculation of the

confidence intervals for the parameters estimates.

1 Smoothed parameters

Duan, Sun andWang (2012; hereafter DSW) formulate the forward intensity model in which the forward

default intensity for a firm is a function of a number of covariates. The forward default intensity for

different forward starting periods are computed using different sets of parameters.

In DSW, the sets of parameters are estimated separately for each forward starting time. Parameters

at different forward starting times that are associated with each covariate can be approximated

by a function of the forward starting time using NS type term structure functions. DSW show

that this approximation by NS functions does not negatively affect prediction performance. The

RMI implementation follows Duan and Fulop (2013) to impose the functional restriction during the

estimation as opposed to DSW's method of fitting the curve after parameter estimates have been

obtained. This is done for two reasons.
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First, it will significantly reduce the number of parameters. For example, using 12 covariates for forward

default intensities up to60monthswould necessitate the joint estimation of13×60 = 780 parameters.

Here, 13 comes from adding an intercept to the intensity function with 12 covariates. If the coefficients

corresponding to each covariate are represented by the NS function of 4 parameters, there will be at

most 13 × 4 = 52 parameters. In fact, there will be fewer parameters as some of the NS parameters

will be restricted to zero.

Second, the NS function will allow for extrapolation. For example, the 13 NS functions estimated with

predictions up to 60 months can be used for prediction, say, over 72 months.

The NS function with four free parameters is:

ℎ(𝜏; 𝜚􀍭, 𝜚􀍮, 𝜚􀍯, 𝑑) = 𝜚􀍭 + 𝜚􀍮
1 − exp(−𝜏/𝑑)

𝜏/𝑑
+ 𝜚􀍯 [

1 − exp(−𝜏/𝑑)

𝜏/𝑑
− exp(−𝜏/𝑑)] ,

where 𝜏 is the forward starting time (measured in years). In the RMI implementation, 𝜏 ranges from 0 to

5 years. For all covariates, the restriction 𝑑 > 0 is imposed so that the functions converge to a value for

large 𝜏. This formulation will be used for forward intensities for both defaults and other types of exit.

For the coefficients of all stochastic covariates, the long-run level 𝜚􀍭 is restricted to zero, because the

current value of a stochastic covariate should be uninformative of default or other exits when the

forward starting time goes to infinity. In other words, the coefficient of such a stochastic covariate

should approach zero when 𝜏 goes to infinity.

The intercept of the forward intensity function is of course non-stochastic. Thus, 𝜚􀍭 can have non-zero

values for the intercept. With these restrictions on the NS parameters, for the example of 12 covariates

there will be a total of 12 × 3 + 1 × 4 = 40 parameters.

In the RMI implementation, the NS function is further constrained to be non-positive for certain

covariates: DTD level and trend, Liquidity level and trend, and Profitability level and trend. Imposing

these constraints is consistent with the previous implementation as documented in Technical Report,

Version: 2012, Update 2.

2 Parameter estimation by Sequential Monte Carlo

Reliably estimating a system involving 40 parameters presents a numerical challenge. Moreover,

the number of parameters can be greater than 40 if there are more than 12 covariates. The
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RMI implmentation follows Duan and Fulop (2013) who use the sequential Monte Carlo (SMC)

pseudo-Bayesian method for estimation and self-normalized statistics for inference.

Due to decomposability, the analysis can be performed separately on the default and other exit forward

intensities. The data in the RMI implementation ismonthly, and the sample likelihood used in estimation

relies on default predictions running from 1 month to 60 months with an increment of 1 month.

Naturally, default prediction is subject to data availability. Towards the end of the sample, the prediction

horizon naturally decreases and stops at one-month predictions.

The following exposition closely follows the appendix in Duan and Fulop (2013). It is important to note

that the RMI implementation uses the DSW model which does not contain any latent frailty or partial

conditioning variable, and hence is technically much simpler in parameter estimation. For example,

there is no nonlinear filtering problem.

Let 𝜃 be a set of parameters, 𝜋(𝜃) the prior, 𝛾􀐠(𝜃) the pseudo posterior at time 𝑡 after one makes the

𝜏-period prediction, and 𝐿􀐖,􀎤􀎠􀎥(􀐆􀍸􀐖􀎵􀐠,􀑔)(𝜃) the pseudo likelihood function at step 𝑗. The sample period

is [0, 𝑇] and the data in the RMI implementation is monthly, i.e., Δ𝑡 = 1/12. Consider the following

pseudo-posterior distribution:

𝛾􀐠(𝜃) ∝

􀐠

∏

􀐖􀍹􀍭

𝐿􀐖,􀎤􀎠􀎥(􀐆􀍸􀐖􀎵􀐠,􀑔)(𝜃)𝜋(𝜃), for 𝑡 = 1,… ,
𝑇

Δ𝑡
− 1.

One can apply the sequential batch-resampling routine of Chopin (2002) together with tempering steps

as in Del Moral, et al (2006) to advance the system. For each 𝑡, this procedure yields a weighted sample

of𝑁 particles, (𝜃(􀐕,􀐠), 𝑤(􀐕,􀐠)) for 𝑖 = 1,… ,𝑁, whose empirical distribution functionwill converge to 𝛾􀐠(𝜃)

as 𝑁 increases. In what follows, the superscript 𝑖 denotes the particle index, 𝑖 = 1,… ,𝑁. Note that in

the RMI implementation, 𝑁 = 1000.

Initialization: Draw an initial random sample from the prior: (𝜃(􀐕,􀍭) ∼ 𝜋(𝜃), 𝑤(􀐕,􀍭) =
􀍮

􀐀
). Here, the

only role of the prior 𝜋(𝜃), is to provide the initial particle cloud from which the algorithm can start.

Of course, the support of 𝜋(𝜃) must contain the true parameter value 𝜃􀍭. In the RMI implementation,

normal/truncated normal priors are used. Truncation applies in order to impose the restriction 𝑑 > 0.

Themeans for the priors are theMLE parameter estimates obtained without the NS constraints, and the

standard deviations are set at 5.

Recursions and defining the tempering sequence: Assume there is a particle cloud (𝜃(􀐕,􀐠), 𝑤(􀐕,􀐠))

whose empirical distribution represents 𝛾􀐠(𝜃). Then, a cloud representing 𝛾􀐠􀍷􀍮(𝜃) will be reached by
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combining importance sampling and Markov Chain Monte Carlo (MCMC) steps. Sometimes moving

directly from 𝛾􀐠(𝜃) to 𝛾􀐠􀍷􀍮(𝜃) is too ambitious as the two distributions are too far from each other.

This will be reflected in highly variable importance weights if one resorts to direct importance sampling.

Hence, following Duan and Fulop (2013) which in turn followed Del Moral, et al (2006), a tempered

bridge is built between the two densities and the particles are evolved through the resulting sequence

of densities. In particular, assume that at 𝑡 + 1, there are 𝑃􀐠􀍷􀍮 intermediate densities:

𝛾
􀐠􀍷􀍮,􀐜

(𝜃) ∝ 𝛾􀐠(𝜃)𝐿
􀑎􀔔
􀐠􀍷􀍮,􀎤􀎠􀎥(􀐆􀍸(􀐠􀍷􀍮)􀎵􀐠,􀑔)(𝜃), for 𝑝 = 1,… , 𝑃􀐠􀍷􀍮.

This construction defines an appropriate bridge: 𝜉􀍭 = 0 so that 𝛾
􀐠􀍷􀍮,􀍭

(𝜃) = 𝛾􀐠(𝜃), and 𝜉􀐂􀔘􀑯􀑦
= 1 so

that 𝛾
􀐠􀍷􀍮,􀐂􀔘􀑯􀑦

(𝜃) = 𝛾􀐠􀍷􀍮(𝜃). For 𝑝 between 0 and 𝑃􀐠􀍷􀍮, 𝜉
􀐜 is chosen from a grid of points to evenly

distribute the weights, as decribed below. A particle cloud representing 𝛾
􀐠􀍷􀍮,􀍭

(𝜃) can be initialized as:

(𝜃
(􀐕,􀐠􀍷􀍮,􀍭)

, 𝑤
(􀐕,􀐠􀍷􀍮,􀍭)

) = (𝜃(􀐕,􀐠), 𝑤(􀐕,􀐠)) .

Then, for 𝑝 = 1,… , 𝑃􀐠􀍷􀍮 the sequence proceeds as follows:

• Reweighting Step: In order to arrive at a representation of 𝛾
􀐠􀍷􀍮,􀐜

(𝜃), the particles representing

𝛾
􀐠􀍷􀍮,􀐜􀍸􀍮

(𝜃) and the importance sampling principle can be used. This leads to:

𝜃
(􀐕,􀐠􀍷􀍮,􀐜)

= 𝜃
(􀐕,􀐠􀍷􀍮,􀐜􀍸􀍮)

𝑤
(􀐕,􀐠􀍷􀍮,􀐜)

= 𝑤
(􀐕,􀐠􀍷􀍮,􀐜􀍸􀍮)

𝛾
􀐠􀍷􀍮,􀐜

(𝜃
(􀐕,􀐠􀍷􀍮,􀐜)

)

𝛾
􀐠􀍷􀍮,􀐜􀍸􀍮

(𝜃
(􀐕,􀐠􀍷􀍮,􀐜)

)

= 𝑤
(􀐕,􀐠􀍷􀍮,􀐜􀍸􀍮)

𝐿
􀑎􀔔􀍸􀑎􀔔􀑰􀑦
􀐠􀍷􀍮,􀎤􀎠􀎥(􀐆􀍸(􀐠􀍷􀍮)􀎵􀐠,􀑔) (𝜃

(􀐕,􀐠􀍷􀍮,􀐜)
)

To avoid particle impoverishment in sequential importance sampling where most of the weight

is concentrated in a small number of particles, resample-move step is run, which is triggered

whenever a measure of particle diversity, the efficient sample size 𝐸𝑆𝑆, defined as:

𝐸𝑆𝑆 =
(∑

􀐀
􀐕􀍹􀍮𝑤

(􀐕,􀐠􀍷􀍮,􀐜)
)
􀍯

∑
􀐀
􀐕􀍹􀍮 (𝑤

(􀐕,􀐠􀍷􀍮,􀐜)
)
􀍯 ,

falls below some preset value 𝐵. Here, resampling directs the particle cloud towards more likely

areas of the sampling space, while the move step enriches particle diversity.

In the RMI implementation, 𝐵 is set to 50%. Thus, if 𝐸𝑆𝑆 < 50%, the following resampling and

move steps are performed.
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• Resampling Step: The particles are resampled proportional to their weights. If 𝐼(􀐕,􀐠􀍷􀍮,􀐜) ∈

(1,… ,𝑁) are particle indices sampled proportional to 𝑤
(􀐕,􀐠􀍷􀍮,􀐜)

, the equally weighted particles

are obtained as

𝜃
(􀐕,􀐠􀍷􀍮,􀐜)

= 𝜃
(􀏻(􀔍,􀔘􀑯􀑦,􀔔),􀐠􀍷􀍮,􀐜)

𝑤
(􀐕,􀐠􀍷􀍮,􀐜)

=
1

𝑁

• Move Step: Each particle is passed through a Markov Kernel 𝐾􀐠􀍷􀍮,􀐜 (𝜃
(􀐕,􀐠􀍷􀍮,􀐜)

, ⋅) that leaves

𝛾
􀐠􀍷􀍮,􀐜

(𝜃) invariant, typically a Metropolis-Hastings kernel:

1. Propose 𝜃∗(􀐕) ∼ 𝑄􀐠􀍷􀍮,􀐜 ( ⋅ |𝜃
(􀐕,􀐠􀍷􀍮,􀐜)

).

2. Compute the acceptance weight 𝛼, where:

𝛼 = min(1,

𝛾
􀐠􀍷􀍮,􀐜

(𝜃∗(􀐕))𝑄􀐠􀍷􀍮,􀐜 (𝜃
(􀐕,􀐠􀍷􀍮,􀐜)

| 𝜃∗(􀐕))

𝛾
􀐠􀍷􀍮,􀐜

(𝜃
(􀐕,􀐠􀍷􀍮,􀐜)

)𝑄􀐠􀍷􀍮,􀐜 (𝜃
∗(􀐕) |𝜃

(􀐕,􀐠􀍷􀍮,􀐜)
)

) .

3. With probability 𝛼, set 𝜃
(􀐕,􀐠􀍷􀍮,􀐜)

= 𝜃∗(􀐕), otherwise keep the old particle.

This step will enrich the support of the particle cloud while conserving its distribution. If the

particle set is a poor representation of the target distribution, the resampling step can help

adjust the location of the support. Crucially, given the importance sampling setup, the proposal

distribution 𝑄􀐠􀍷􀍮,􀐜 (⋅ |𝜃
(􀐕,􀐠􀍷􀍮,􀐜)

) can be adapted using the existing particle cloud.

In the RMI implementation, block independent normal distribution proposals are fitted to the

particle cloud before the move. Three (or four) Nelson-Siegel parameters corresponding to each

covariate form one block. To ensure that 𝑑 remains positive, any block with a non-positive

value for 𝑑 is discarded and the particle is resampled. Note that the likelihood ratio in the

Metropolis-Hastings algorithm is not affected by this because the truncated normal creates a

common adjustment term in both numerator and denominator.

Asmentioned previously, the coefficients for some covariates are required to be non-positive over

all forward starting times. This is achieved by checking whether the NS curve at a particular set of

three (or four) parameters meets the condition. If not, the parameter set will be discarded.

To improve the support of the particle cloud further, one can execute multiple such

Metropolis-Hastings steps eachtime. In theRMI implementation, additionalmoves are performed
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only after 𝜉􀐜 reaches 1. Each move uses the means implied by the particle set but all standard

deviations are increased by a factor of 30%. The number of moves is set to 20 for the first

time point and exponentially declines to 3 mid-way to the sample period and stays at 3 for the

remainder.

When 𝑝 = 𝑃􀐠􀍷􀍮 is reached, a representation of 𝛾􀐠􀍷􀍮(𝜃) is:

(𝜃(􀐕,􀐠􀍷􀍮), 𝑤(􀐕,􀐠􀍷􀍮)) = (𝜃
(􀐕,􀐠􀍷􀍮,􀐂􀔘􀑯􀑦)

, 𝑤
(􀐕,􀐠􀍷􀍮,􀐂􀔘􀑯􀑦)) .

Following Duan and Fulop (2013), the tempering sequence 𝜉􀐜 is automatically set to ensure that

the efficient sample size stays close to 50%. This is done by a grid search, where the 𝐸𝑆𝑆 is

evaluated at a grid of candidate 𝜉􀐜 and the one that produces the closest 𝐸𝑆𝑆 to 50% is chosen.

3 Periodic updating

In reality, portfolio credit risk models need to be updated periodically as new data arrive and/or old data

are revised. With one new month of data, this means that the final date 𝑇 is increased to 𝑇 + Δ𝑡. A

particular strength of Duan and Fulop (2013) methodology is that the estimation routine does not need

to be re-initialized from the prior as the pseudo-posterior using data up to 𝑇 will provide a much better

proposal distribution. Let the pseudo-posterior at 𝑇 be denoted by:

𝛾
(􀐆)
􀐆 (𝜃) ∝

􀐆/􀎵􀐠􀍸􀍮

∏

􀐖􀍹􀍭

𝐿
(􀐆)
􀐖,􀎤􀎠􀎥(􀐆􀍸􀐖􀎵􀐠,􀑔)(𝜃)𝜋(𝜃),

and the pseudo-posterior at 𝑇 + Δ𝑡 by:

𝛾
(􀐆􀍷􀎵􀐠)
􀐆􀍷􀎵􀐠 (𝜃) ∝

􀐆/􀎵􀐠

∏

􀐖􀍹􀍭

𝐿
(􀐆􀍷􀎵􀐠)
􀐖,􀎤􀎠􀎥(􀐆􀍸(􀐖􀍸􀍮)􀎵􀐠,􀑔)(𝜃)𝜋(𝜃).

The superscript is introduced to differentiate the pseudo likelihoods at 𝑇 and 𝑇 + Δ𝑡. Due to data

revisions, for example, it may be the case that 𝐿
(􀐆􀍷􀎵􀐠)
􀐖,􀐗 (𝜃) ≠ 𝐿

(􀐆)
􀐖,􀐗 (𝜃).

Assume that from the previous run up to 𝑇 there is a weighted set of particles

(𝜃(􀐕,􀐆/􀎵􀐠􀍸􀍮), 𝑤(􀐕,􀐆/􀎵􀐠􀍸􀍮)) representing the pseudo-posterior 𝛾
(􀐆)
􀐆 (𝜃). Next, set 𝜃(􀐕,􀐆/􀎵􀐠) = 𝜃(􀐕,􀐆/􀎵􀐠􀍸􀍮)

and reweight by

𝑤(􀐕,􀐆/􀎵􀐠) = 𝑤(􀐕,􀐆/􀎵􀐠􀍸􀍮) ×
𝛾
(􀐆􀍷􀎵􀐠)
􀐆􀍷􀎵􀐠 (𝜃(􀐕,􀐆/􀎵􀐠))

𝛾
(􀐆)
􀐆 (𝜃(􀐕,􀐆/􀎵􀐠))

Since the denominator is already available from the previous run, one only needs to compute the

numerator using the new and revised data set. Then, the weighted set (𝜃(􀐕,􀐆/􀎵􀐠), 𝑤(􀐕,􀐆/􀎵􀐠)) represents
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the new pseudo-posterior 𝛾
(􀐆􀍷􀎵􀐠)
􀐆􀍷􀎵􀐠 (𝜃). If the weights are too uneven, intermediate tempered densities

can be constructed and resample-move steps can be executed.

The initial parameter estimation is carried out for all calibration groups using the data up to the month

end of January 2013. Relevant quantities (parameter estimates, the 1000 parameter particles and

corresponding weights and sample likelihoods) are saved for periodic updating for all future months.

4 Statistical Inference

The full sample size has 𝑇/Δ𝑡+1 time series data points and predictions at time 0 all the way to the last

prediction point of 𝑇/Δ𝑡 − 1 will be made. Denote the pseudo-posterior mean of the parameter of the

whole sample by 𝜃̂􀐆/􀎵􀐠􀍸􀍮:

𝜃̂􀐆/􀎵􀐠􀍸􀍮 =
1

∑
􀐀
􀐕􀍹􀍮𝑤

(􀐕,􀐆/􀎵􀐠􀍸􀍮)

􀐀

∑

􀐕􀍹􀍮

𝑤(􀐕,􀐆/􀎵􀐠􀍸􀍮)𝜃(􀐕,􀐆/􀎵􀐠􀍸􀍮)

Note that 𝛾􀐠(𝜃) is not a true posterior, and it cannot directly provide valid Bayesian inference. But

following Duan and Fulop (2013) – which is in turn based on Shao's (2010) self-normalized statistic –

inference can be performed using the 𝑡-like statistic. To test, for example, the hypothesis of the 𝑖􀎫􀎟

element of 𝜃􀍭, denoted by 𝜃
(􀐕)
􀍭 , equal to 𝑎, one has:

𝑡∗ =
√𝑇/Δ𝑡 (𝜃̂

(􀐕)
􀐆/􀎵􀐠􀍸􀍮 − 𝑎)

√𝛿̂􀐕,􀐆

→􀐐
𝑊(1)

[∫
􀍮

􀍭
(𝑊(𝑟) − 𝑟𝑊(1))􀍯𝑑𝑟]

􀍮/􀍯
,

where𝑊(𝑟) is a Wiener process, 𝛿̂􀐕,􀐆 is the 𝑖􀎫􀎟 diagonal element of 𝐶̂􀐆, and

𝐶̂􀐆 =
1

(𝑇/Δ𝑡)􀍯

􀐆/􀎵􀐠􀍸􀍮

∑

􀐘􀍹􀍭

𝑙􀍯(𝜃̂􀐘 − 𝜃̂􀐆/􀎵􀐠􀍸􀍮)(𝜃̂􀐘 − 𝜃̂􀐆/􀎵􀐠􀍸􀍮)
􀚄.

The right-hand-side random variable for 𝑡∗ does not have a known distribution, but can be easily

simulated. Kiefer, et al (2000) reported that the 95% quantile is 5.374 and the 97.5% quantile is 6.811.

These values can also be used to set up confidence intervals. Statistics are easily updated along with the

periodic updating.
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